Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.

Identifieur interne : 000652 ( Main/Exploration ); précédent : 000651; suivant : 000653

Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.

Auteurs : Colin E. Murdoch ; Michaela Shuler ; Dagmar J F. Haeussler ; Ryosuke Kikuchi ; Priyanka Bearelly ; Jingyan Han ; Yosuke Watanabe ; José J. Fuster ; Kenneth Walsh ; Ye-Shih Ho ; Markus M. Bachschmid ; Richard A. Cohen ; Reiko Matsui

Source :

RBID : pubmed:24482236

Descripteurs français

English descriptors

Abstract

Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.

DOI: 10.1074/jbc.M113.517219
PubMed: 24482236
PubMed Central: PMC3961686


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.</title>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation>
<nlm:affiliation>From the Vascular Biology Section and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Vascular Biology Section and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shuler, Michaela" sort="Shuler, Michaela" uniqKey="Shuler M" first="Michaela" last="Shuler">Michaela Shuler</name>
</author>
<author>
<name sortKey="Haeussler, Dagmar J F" sort="Haeussler, Dagmar J F" uniqKey="Haeussler D" first="Dagmar J F" last="Haeussler">Dagmar J F. Haeussler</name>
</author>
<author>
<name sortKey="Kikuchi, Ryosuke" sort="Kikuchi, Ryosuke" uniqKey="Kikuchi R" first="Ryosuke" last="Kikuchi">Ryosuke Kikuchi</name>
</author>
<author>
<name sortKey="Bearelly, Priyanka" sort="Bearelly, Priyanka" uniqKey="Bearelly P" first="Priyanka" last="Bearelly">Priyanka Bearelly</name>
</author>
<author>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
</author>
<author>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
</author>
<author>
<name sortKey="Fuster, Jose J" sort="Fuster, Jose J" uniqKey="Fuster J" first="José J" last="Fuster">José J. Fuster</name>
</author>
<author>
<name sortKey="Walsh, Kenneth" sort="Walsh, Kenneth" uniqKey="Walsh K" first="Kenneth" last="Walsh">Kenneth Walsh</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
</author>
<author>
<name sortKey="Cohen, Richard A" sort="Cohen, Richard A" uniqKey="Cohen R" first="Richard A" last="Cohen">Richard A. Cohen</name>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24482236</idno>
<idno type="pmid">24482236</idno>
<idno type="doi">10.1074/jbc.M113.517219</idno>
<idno type="pmc">PMC3961686</idno>
<idno type="wicri:Area/Main/Corpus">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000654</idno>
<idno type="wicri:Area/Main/Curation">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000654</idno>
<idno type="wicri:Area/Main/Exploration">000654</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.</title>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation>
<nlm:affiliation>From the Vascular Biology Section and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Vascular Biology Section and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Shuler, Michaela" sort="Shuler, Michaela" uniqKey="Shuler M" first="Michaela" last="Shuler">Michaela Shuler</name>
</author>
<author>
<name sortKey="Haeussler, Dagmar J F" sort="Haeussler, Dagmar J F" uniqKey="Haeussler D" first="Dagmar J F" last="Haeussler">Dagmar J F. Haeussler</name>
</author>
<author>
<name sortKey="Kikuchi, Ryosuke" sort="Kikuchi, Ryosuke" uniqKey="Kikuchi R" first="Ryosuke" last="Kikuchi">Ryosuke Kikuchi</name>
</author>
<author>
<name sortKey="Bearelly, Priyanka" sort="Bearelly, Priyanka" uniqKey="Bearelly P" first="Priyanka" last="Bearelly">Priyanka Bearelly</name>
</author>
<author>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
</author>
<author>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
</author>
<author>
<name sortKey="Fuster, Jose J" sort="Fuster, Jose J" uniqKey="Fuster J" first="José J" last="Fuster">José J. Fuster</name>
</author>
<author>
<name sortKey="Walsh, Kenneth" sort="Walsh, Kenneth" uniqKey="Walsh K" first="Kenneth" last="Walsh">Kenneth Walsh</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
</author>
<author>
<name sortKey="Cohen, Richard A" sort="Cohen, Richard A" uniqKey="Cohen R" first="Richard A" last="Cohen">Richard A. Cohen</name>
</author>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Movement (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Endothelial Cells (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Hindlimb (blood supply)</term>
<term>Hindlimb (physiopathology)</term>
<term>Humans (MeSH)</term>
<term>Ischemia (genetics)</term>
<term>Ischemia (metabolism)</term>
<term>Ischemia (physiopathology)</term>
<term>Mice (MeSH)</term>
<term>Mice, Transgenic (MeSH)</term>
<term>NF-kappa B (metabolism)</term>
<term>Neovascularization, Physiologic (MeSH)</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>Up-Regulation (MeSH)</term>
<term>Vascular Endothelial Growth Factor Receptor-1 (metabolism)</term>
<term>Wnt Proteins (metabolism)</term>
<term>Wnt-5a Protein (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cellules endothéliales (métabolisme)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Ischémie (génétique)</term>
<term>Ischémie (métabolisme)</term>
<term>Ischémie (physiopathologie)</term>
<term>Membre pelvien (physiopathologie)</term>
<term>Membre pelvien (vascularisation)</term>
<term>Mouvement cellulaire (MeSH)</term>
<term>Néovascularisation physiologique (MeSH)</term>
<term>Protéine Wnt-5a (MeSH)</term>
<term>Protéines de type Wingless (métabolisme)</term>
<term>Protéines proto-oncogènes (métabolisme)</term>
<term>Récepteur-1 au facteur croissance endothéliale vasculaire (métabolisme)</term>
<term>Régulation positive (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris transgéniques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="blood supply" xml:lang="en">
<term>Hindlimb</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Ischemia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Ischémie</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelial Cells</term>
<term>Glutaredoxins</term>
<term>Ischemia</term>
<term>NF-kappa B</term>
<term>Proto-Oncogene Proteins</term>
<term>Vascular Endothelial Growth Factor Receptor-1</term>
<term>Wnt Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules endothéliales</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Glutarédoxines</term>
<term>Ischémie</term>
<term>Protéines de type Wingless</term>
<term>Protéines proto-oncogènes</term>
<term>Récepteur-1 au facteur croissance endothéliale vasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Ischémie</term>
<term>Membre pelvien</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Hindlimb</term>
<term>Ischemia</term>
</keywords>
<keywords scheme="MESH" qualifier="vascularisation" xml:lang="fr">
<term>Membre pelvien</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Movement</term>
<term>Cells, Cultured</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Neovascularization, Physiologic</term>
<term>Up-Regulation</term>
<term>Wnt-5a Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Mouvement cellulaire</term>
<term>Néovascularisation physiologique</term>
<term>Protéine Wnt-5a</term>
<term>Régulation positive</term>
<term>Souris</term>
<term>Souris transgéniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24482236</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.</ArticleTitle>
<Pagination>
<MedlinePgn>8633-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.517219</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Murdoch</LastName>
<ForeName>Colin E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>From the Vascular Biology Section and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shuler</LastName>
<ForeName>Michaela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haeussler</LastName>
<ForeName>Dagmar J F</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kikuchi</LastName>
<ForeName>Ryosuke</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bearelly</LastName>
<ForeName>Priyanka</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Jingyan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Yosuke</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fuster</LastName>
<ForeName>José J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Walsh</LastName>
<ForeName>Kenneth</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Shih</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bachschmid</LastName>
<ForeName>Markus M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Richard A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN268201000031C</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL081587</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL007224</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL081587</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL068758</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL 068758</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 HL104017</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C085389">WNT5A protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051153">Wnt Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071818">Wnt-5a Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C501162">FLT1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C501163">Flt1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D040281">Vascular Endothelial Growth Factor Receptor-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002465" MajorTopicYN="N">Cell Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006614" MajorTopicYN="N">Hindlimb</DescriptorName>
<QualifierName UI="Q000098" MajorTopicYN="Y">blood supply</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007511" MajorTopicYN="N">Ischemia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018919" MajorTopicYN="N">Neovascularization, Physiologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040281" MajorTopicYN="N">Vascular Endothelial Growth Factor Receptor-1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051153" MajorTopicYN="N">Wnt Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071818" MajorTopicYN="N">Wnt-5a Protein</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Angiogenesis</Keyword>
<Keyword MajorTopicYN="N">Animal Models</Keyword>
<Keyword MajorTopicYN="N">Glutathionylation</Keyword>
<Keyword MajorTopicYN="N">Ischemia</Keyword>
<Keyword MajorTopicYN="N">NF-kappa B (NF-κB)</Keyword>
<Keyword MajorTopicYN="N">Redox Regulation</Keyword>
<Keyword MajorTopicYN="N">Vascular Endothelial Growth Factor (VEGF)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24482236</ArticleId>
<ArticleId IdType="pii">M113.517219</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.517219</ArticleId>
<ArticleId IdType="pmc">PMC3961686</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(4):e34434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22485170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2010 Jan 7;29(1):34-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 16;285(29):22291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vasc Cell. 2011 Jul 13;3(1):15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21752276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 28;274(22):15857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10336489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Nov;116(11):2955-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clinics (Sao Paulo). 2011;66(8):1419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21915494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Diabetol. 2014 Apr;51(2):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 14;289(11):7293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 24;288(21):15380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23548900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Oct 15;125(Pt 20):4751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22854047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2006 Jul 15;71(2):226-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16781692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct 1;13(7):1023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(12):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol (Oxf). 2012 Jan;204(1):17-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Oct 19;110(16):2424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15477417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Mar 15;69(6):2607-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19276374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Oct 15;49(7):1221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Jun 25;257(12):6686-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7045093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2012 Nov 27;126(22):2589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Aug 1;373(Pt 3):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12723971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Jul 15;185(2):1274-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2007 Aug;14(8):1393-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17464324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22472004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2001 Sep;21(9):1483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Mar 15;12(6):713-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2013 Mar 28;121(13):2574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23303818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2012 Apr 13;110(8):1077-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8248162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Oct 26;101(9):948-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17823371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2011 Mar 4;108(5):531-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2006 Aug 1;108(3):965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16601243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Mar;20(3):518-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2004 Oct 29;95(9):884-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15472115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7765-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Oct 30;284(44):30167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19720827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3276-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 17;485(7398):333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22596155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 23;474(7352):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bachschmid, Markus M" sort="Bachschmid, Markus M" uniqKey="Bachschmid M" first="Markus M" last="Bachschmid">Markus M. Bachschmid</name>
<name sortKey="Bearelly, Priyanka" sort="Bearelly, Priyanka" uniqKey="Bearelly P" first="Priyanka" last="Bearelly">Priyanka Bearelly</name>
<name sortKey="Cohen, Richard A" sort="Cohen, Richard A" uniqKey="Cohen R" first="Richard A" last="Cohen">Richard A. Cohen</name>
<name sortKey="Fuster, Jose J" sort="Fuster, Jose J" uniqKey="Fuster J" first="José J" last="Fuster">José J. Fuster</name>
<name sortKey="Haeussler, Dagmar J F" sort="Haeussler, Dagmar J F" uniqKey="Haeussler D" first="Dagmar J F" last="Haeussler">Dagmar J F. Haeussler</name>
<name sortKey="Han, Jingyan" sort="Han, Jingyan" uniqKey="Han J" first="Jingyan" last="Han">Jingyan Han</name>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<name sortKey="Kikuchi, Ryosuke" sort="Kikuchi, Ryosuke" uniqKey="Kikuchi R" first="Ryosuke" last="Kikuchi">Ryosuke Kikuchi</name>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<name sortKey="Shuler, Michaela" sort="Shuler, Michaela" uniqKey="Shuler M" first="Michaela" last="Shuler">Michaela Shuler</name>
<name sortKey="Walsh, Kenneth" sort="Walsh, Kenneth" uniqKey="Walsh K" first="Kenneth" last="Walsh">Kenneth Walsh</name>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000652 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000652 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24482236
   |texte=   Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24482236" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020